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Abstract—We present the design and implementation of Data
Jockey, a data management system for HPC multi-tiered stor-
age systems. As a centralized data management control plane,
Data Jockey automates bulk data movement and placement for
scientific workflows and integrates into existing HPC storage
infrastructures. Data Jockey simplifies data management by elim-
inating human effort in programming complex data movements,
laying datasets across multiple storage tiers when supporting
complex workflows, which in turn increases the usability of multi-
tiered storage systems emerging in modern HPC data centers.

Specifically, Data Jockey presents a new data management
scheme called “goal driven data management” that can automat-
ically infer low-level bulk data movement plans from declarative
high-level goal statements that come from the lifetime of iterative
runs of scientific workflows. While doing so, Data Jockey aims
to minimize data wait times by taking responsibility for datasets
that are unused or to be used, and aggressively utilizing the
capacity of the upper, higher performant storage tiers.

We evaluated a prototype implementation of Data Jockey
under a synthetic workload based on a year’s worth of Oak Ridge
Leadership Computing Facility’s (OLCF) operational logs. Our
evaluations suggest that Data Jockey leads to higher utilization of
the upper storage tiers while minimizing the programming effort
of data movement compared to human involved, per-domain ad-
hoc data management scripts.

I. INTRODUCTION

Scientific workflows have become increasingly sophisticated

with the growing emphasis on data analysis to keep up with

data growth from experiments, observations and simulations

[1]. This growth has given rise to several performance and

data management challenges for scientific workflows running

in HPC environments. To address such challenges, modern

HPC storage infrastructure is evolving to have deeper storage

hierarchies. In particular, a tiered storage architecture is gain-

ing more interest in large-scale HPC deployments, and such a

trend is expected to continue for the next decade [2], [3]. While

the tiered storage architecture has been around for a long time

to overcome limitations of monolithic storage architectures, it

is gaining renewed interest as new storage technologies, e.g.,

SSDs, diversify and enrich the hierarchy.

The combined impact of complex data pipelines (work-

flows) and deeper storage hierarchies (multiple storage tiers)

has made data management on modern HPC centers a complex

and challenging task. The current data management practices,

which rely heavily on ad-hoc, manual data migrations are no

longer feasible to manage vast amounts of scientific datasets

across multiple storage tiers. Instead, providing a simpler stor-

age abstraction that hides the underlying storage architecture

is necessary to empower scientists to focus on the scientific

discovery process.

Despite a few existing solutions, data management tasks

are still largely relegated to the users. For instance, while

users can employ scientific workflow managers [4] [5] [6],

they typically cannot cope with multiple storage tiers. Simi-

larly, existing tiered storage management mechanisms [7] and

automatic data management systems [8] are not suitable for

large-scale HPC data centers, because they are not designed

to accommodate the batch-oriented, workflow-driven nature

of HPC applications, and thus cannot readily coordinate with

existing system components (i.e., job scheduler, file systems,

archival, and workflow management systems). Furthermore,

such systems aim to facilitate system administrator’s tasks

(i.e., performing system-wide data migrations) and do not

provide an intuitive abstraction for end-users to orchestrate

data migrations conforming to their individual needs.

To fill this gap, we present Data Jockey, a user-driven

workflow-aware data management system for multi-tiered stor-

age systems in batch-oriented HPC environments. Our goal

is to automate the task of orchestrating bulk data movement

and placement of datasets consumed by scientific workflows.

Data Jockey is deployed as an HPC center-wide consolidated

data management service that intelligently migrates datasets

and manages storage capacities as required by target scientific

workflows.

To support such automation of data management, Data

Jockey presents a new data management scheme called “goal

driven data management” that provides a declarative way of

defining data movement under user workflows. In particular,

this scheme reduces the burden of programming data move-

ment by managing the dynamic state of user data and using

that to automate source to destination data movement. With

this scheme, Data Jockey is designed to have two planes

that separate control and data. The control plane implements

the data orchestration scheme as a centralized service that

generates small control tasks about data movement, while the

data plane transforms such control into bulk data movement.

In between, a resource abstraction layer provides a unified
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Fig. 1: Multi-tiered storage in HPC: Users in HPC centers

have to manage data across several storage tiers or locations.

Above is an example of Oak Ridge Leadership Computing

Facility (OLCF) [9] where users have to manage data across

multiple physical storage systems but also multiple logical

storage tiers with different policies being applied [10].

interface to bridge control over heterogeneous data plane

resources.

Contributions: The main contribution of this work is the

design and implementation of Data Jockey that, at the core,

presents a new “goal driven data management” scheme. In

this work, we describe the concept, design, and architecture

of this scheme and demonstrate its impact on a modern HPC

data center. An analysis that quantifies the complexity of

day to day data management is provided where we present

how much complexity is reduced by our method. Further,

we have deployed a prototype implementation of Data Jockey

that implements the key features of our design in a real HPC

environment and demonstrated its feasibility as a center-wide

data management system that can be used in modern HPC

data centers. Data Jockey is capable of reducing 85.7% to

99.9% of the programming complexity of data management,

enabling users to better utilize the higher-performing, upper

storage tiers.

II. BACKGROUND AND MOTIVATION

A. Multi-tiered Storage in HPC

Multi-tiered storage is gaining interest as new storage

technologies such as flash-based SSDs diversify the storage

hierarchy. For example, the Oak Ridge Leadership Computing

Facility (OLCF) [9] will have four storage tiers, namely the

NVM-based burst buffer, the disk-based Spider III GPFS

parallel file system (PFS) along with its predecessor Spider

II Lustre PFS temporarily available before retiring, and the

disk/tape-based HPSS archival storage, all to accommodate de-

manding storage needs from supercomputers including the 200

petaflop Summit system [2] (No. 1 in the Top500 list). These

storage tiers support diverse I/O requirements such as the

need to absorb high-speed, bursty and transient checkpoints,

medium-term data analysis and long-term data retention. Other

facilities have introduced yet another layer, the campaign

storage, between the PFS and the archive, to support extended

data analysis. Such a trend intensifies the already complicated

storage hierarchy, e.g., currently four physical and twelve

logical storage tiers in OLCF (Figure 1), placing an adverse

impact on day-to-day data management tasks of users.

Simulation output: Each storage tier imposes a trade-

off between performance and capacity. Particularly, large-

scale simulations running on a supercomputer require a high-

performance storage tier (e.g., burst buffer) that can rapidly

absorb simulation output and minimize I/O jitter. Also, such

output datasets should be migrated in a timely fashion to a

higher capacity storage tier (e.g., PFS) to reclaim the scarce

capacity of the high-performance tier. For further longer-term

data retention, these datasets should survive various capacity

constraints, including file system quota and data purge cycles.

Analysis input: A target storage tier of a data analysis job

(e.g., burst buffer) may differ from a tier where the input

dataset already resides (e.g., archival storage). This implies

that an extra process of preparing the input data is likely

to become required, which can be costly for large datasets.

Moreover, conflicts between performance requirements of

users and a limited capacity of each storage tier exacerbate

the complexity of such data preparation processes.

Scientific workflows: Scientific workflows deal with large

amounts of data that have different I/O characteristics. Man-

aging such large amounts of data across a multi-tiered storage

system requires workflow specific data management. For in-

stance, users may want to move the input datasets to a fast

storage tier like burst buffer, store and delete intermediate

data as the workflow executes, and copy final outputs to a

persistent store for further analysis. Currently, users explicitly

move these datasets between the storage tiers before, after and

during the execution of a workflow.

III. DATA JOCKEY

A. Goals

Data Jockey is designed and implemented to automate

manual data management tasks for HPC users that have large

datasets and complex workflows.

Batch-oriented, workflow-aware: Data Jockey targets

batch-oriented HPC use cases where bulk data movement and

access are driven by scientific workflows. Such workflows can

either be an ad-hoc sequence of jobs submitted by a human or

a graph of tasks that a workflow management system submits.

To achieve this target, Data Jockey coordinates with existing

job schedulers and workflow managers.

Consolidated data management: Data Jockey aims to be

a consolidated data management system that accommodates

center-wide data management needs. Data Jockey should deal

with the heterogeneity of scientific workflows and the re-

sources since data management can vary between scientific

domains. Also, Data Jockey should be scalable enough to

accommodate data orchestration requests from many users.

User-centric: Due to the user-centric nature of scientific

workflows, Data Jockey aims to provide a user-centric data

management scheme, which differs from existing policy-driven
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TABLE I: Data Jockey Overview

Challenge Approach Related
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management
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    data management

b) Data Jockey alleviates the complexity
    of data management

Work-
space

Fig. 2: Architectural Overview

automation systems [11], [12]. While other policy-driven au-

tomation systems are mainly for administrators that implement

few system-wide policies, Data Jockey aims to serve many

data requirements (policies) directly from the users.

Integrates with HPC data centers: As a data management

system, Data Jockey aims to integrate with existing HPC com-

ponents such as schedulers, workflow managers, file systems,

storage systems, and various data movers. Instead of replacing

such components, Data Jockey focuses on implementing min-

imal wrappers to make such resources accessible to the upper

orchestration components.

B. Overview

Data Jockey is a consolidated data management system

that solves data management challenges (Table I). This con-

solidation replaces ad-hoc workflow specific user automation

scripts related to data movement orchestration that users have

to write otherwise. Figure 2 depicts the high-level architectural

overview of Data Jockey.

Data job submission: Users or workflow managers submit

“data jobs,” which are similar to “compute jobs” (i.e., jobs for

a batch job scheduler). These data jobs specify high-level goal

states (i.e., pre-staged, persisted, replicated, safe) of datasets

as a scientific workflow progresses or even beyond a single

workflow. While batch jobs are submitted to the job scheduler

service (i.e., PBS, Torque/Moab, LSF, Slurm), data jobs are

submitted to Data Jockey through an independent data job

queue manager that interacts with the job scheduler.

Data orchestration pipeline: Data Jockey implements a

new data orchestration scheme called “goal driven data man-

agement” when handling each data job submitted into the data

job queue. By going through multiple stages, high-level data

requirements described in the data jobs are translated into low-

level data movements. While doing so, Data Jockey performs

dataset shuffling based on the future timeline of data usage.

Soon to be used datasets are promoted to a closer storage tier

while datasets to be used later are demoted to a further storage

tier.

Resource manager: Data Jockey actively tracks and modi-

fies the state of user data and the underlying storage infrastruc-

ture (data storage and movers) by maintaining an information

base as well as implementing an API that provides a unified

interface towards these resources. We introduce high-level

abstractions such as data jobs, datasets, data movers and

data storage (shown in Figure 2) to generalize various data

management interactions.

I/O interface: To coordinate I/O and data movement, Data

Jockey introduces an I/O interface layer that implements an

isolated virtual namespace local to each compute job. This

I/O interface prevents collision between data movement and

access while providing redirection to the appropriate tier.

C. Using DataJockey (Use-cases)

1) Automatic data staging and de-staging: The primary

use-case of Data Jockey is to automate data staging and de-

staging in the context of multi-tiered storage systems. Running

a job atop a multi-tiered storage system requires some form

of capacity management for datasets due to the capacity

limitations usually enforced on tiers that are directly available

to applications (i.e., tier one). Manual data movement might be

preferable and straightforward for rigid shallow storage hier-

archies but quickly becomes unmanageable when the number

of storage tiers and the number of datasets increase. In-house

automation of such data movements is prone to errors since

users are not trained software engineers, and this eventually

leads to human intervention.

Data Jockey provides automatic dataset promotion based

on priority and coordinates with the job scheduler. Victim

selection and eviction are automated to prepare space for input

or output datasets, all accompanied with transparent out-of-

band bulk data movement. For users, such automation comes

at the minimal cost of a one-line directive in-line to the job

script per dataset.

2) Automatic data preservation: With Data Jockey, users

can specify policies on user datasets to preserve unused

datasets in the face of unexpected events such as dataset purge

cycles or job failures. For example, under circumstances where
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the human in the loop is absent (i.e., out for a conference),

Data Jockey provides an integrated solution for automatic

data preservation. With a specified timeout of inactivity on a

dataset, datasets can be left on higher tiers until it is mandatory

for the dataset to be moved into safer storage. Additionally,

target destinations can be arbitrary where users can set policies

of multiple safe locations to preserve datasets.

3) Multi-cluster workflow: Another compelling use-case is

to automate bulk data movement in the context of multi-job

workflows that span across multiple compute clusters or even

different HPC facilities (Figure 1). For such use, Data Jockey

is used as a shared data supply substrate that is aware of the

use of multiple storage tiers. Data Jockey employs a resource

management scheme that manages storage systems and data

transport methods as a network of data stores and data movers.

This network is shared by multiple end-points (i.e., multiple

compute clusters or storage archives) where storage hierarchies

are dynamically computed based on proximity to such end-

points.

With the same directives in the job scripts, Data Jockey

provides automatic point-to-point dataset movements tightly

integrated with the automated capacity management mentioned

in Section III-C1. For example, datasets move closer to the

target storage tier available to the target cluster as the associ-

ated job is soon to be executed. In the process, lower priority

datasets are automatically pushed to alternative storage tiers

according to the storage hierarchy dynamically computed with

respect to their target clusters.

In the following sections, we discuss how the aforemen-

tioned use-cases are realized using Data Jockey’s design and

implementation.

IV. DESIGN

A. Abstractions for data management

1) Data job: The primary purpose of a data job is to specify

and trigger bulk data movement that prepares or post-handles

datasets for/from compute jobs (i.e., jobs for schedulers such

as PBS, Torque/Moab, LSF and Slurm). Data jobs are defined

to have one-to-one relationships with compute jobs and are

submitted in parallel, triggering data movements before and

after the execution of the associated compute job. By doing so,

a data job deports in-line ad-hoc data staging and de-staging

scripts to outside of the compute job context and replaces such

scripts with directives for extended data orchestration that are

not limited to data staging and de-staging. To support such

automation, Data Jockey provides a stand-alone orchestration

engine that interacts with the job scheduler to coordinate

data job and compute job execution. When replacing the

in-line scripts, data jobs are specified using a declarative

specification method (detailed in Section V-A) to simplify data

layout operations. In a data job, users describe an array of

<dataset, goal state, policy, mountpoint> tuples (detailed in

the following sections).

2) Dataset and their replicas: Rather than relying on

storage system abstractions such as files or objects, Data

Jockey introduces a high-level abstraction called a “dataset”

that is defined as a collection of dataset replicas placed in the

storage hierarchy. These replicas are a collection of individual

files or objects. This coarsely defined abstraction enabled us

to mitigate the cognitive burden of handling tens of thousands

or millions of files which does not necessarily reflect the user

view of data, enabling us to reflect user data management

workflows or policies that are often at a much higher level than

files. Within a dataset, each replica can have different attributes

(i.e., location, stripe size, state) but the data itself (collection

of files) remains identical. These replicas are organized to have

‘master’ and ‘slave’ relationships where the ‘master’ replica

is handled to be the primary replica.

3) Goal state of a dataset: In a data job, the goal state of

a dataset is assigned to the datasets, representing the desired

physical shape of the datasets requested by the users. By

providing such information, users can control where and how

datasets are prepared for a compute job. To capture such

information, we define states as a set of attributes (i.e., lo-

cation, stripe size, encryption, compression) used to configure

replicas, canonically named (buffered, staged, archived). For

example, a “staged” dataset state ready on a parallel file system

(i.e., Lustre) with a particular stripe size can be materialized

with two key-value pairs of <location, lustre> and <stripe size,

128> under the name “staged”. At system design time, admins

(or power users) are expected to define such states, where users

refer the states by name upon job submission. When submitted

via data jobs, Data Jockey supplies such attributes into low-

level “data actuators (data stores and data movers)” that are

used to prepare datasets.

4) Dataset policies to handle events: In data jobs, dataset

policies are also assigned to the datasets. Policies are used to

handle events like job failures, timeouts, and cancellations.

Policies are structured like a try-catch (or except) block

seen in modern programming languages. There is a primary

directive (try block) being executed, but when an exception

happens, exception blocks (catch / except) are executed. Such

conditional structure of policies is similar to rule-based action

policies implemented by other systems. However, Data Jockey

differs on how actions are described. To limit the complexity

of programming actions of such rules, goal states are used

in place of the actions. When exceptions happen, actions are

parsed as “apply state X to dataset Y” instead of performing

a sequence of actions. Similar to goal states, policies are also

expected to be defined at system design time, later referred

by name in data jobs with canonical names like “default” or

“auto-backup”.

5) Mountpoints for dataset consumption: Mountpoints are

locations in the application storage namespace (i.e., filesystem)

where applications can consume the designated datasets. Such

mountpoints are passed to the I/O redirection component that

translates access to mountpoints on the physical location of the

datasets. This I/O redirection component is configured after

a data job prepares a replica with the desired state pinned

in place. Later, after compute jobs have finished executing,

datasets are unmounted, redirection component is torn down,

and datasets are unpinned.
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6) Data stores and data movers: In Data Jockey, data

stores are data sources and sinks for datasets, and data movers

are the data pipes in between. Data stores represent logical-

physical (also geographical) locations that are regions (subtree)

of an underlying storage system storing user datasets, typically

implemented using a “container” abstraction (i.e., directories

in POSIX) provided by the underlying storage system. Data

movers represent data moving methods that exist between

or within storage systems that can be a simple UNIX “cp”

command or a sophisticated parallel copy method or a file

transfer method between distant geographic locations.

B. Goal Driven Data Management

Figure 3-(a) shows the concept of the “goal driven data

management” scheme proposed in this work. The main idea

of this scheme is to maintain a control loop that modifies the

state of user datasets laid out across the storage infrastructure.

The goal of this control loop is to ensure that a replica that

matches the user goal exists in the system when requested.

Upon executing a compute job, this control loop accepts

the desired state (i.e., desired storage tier) of datasets (data

job) as the reference input and compares it to the current

state of the replicas Data Jockey already has. Such comparison

is performed by comparing metadata attributes that represent

the state at the level of replicas (collection of files). If there

is a difference, this loop computes the necessary low-level

movements required to prepare a replica that has the desired

properties. Afterward, the prepared replica is consumed by

the associated computer job. This concept of a control loop

is inspired by cluster management systems such as Kuber-

netes [13], Ansible [14] and Puppet [15]. In the case of Data

Jockey, such control is applied by managing the state of user

datasets instead of infrastructure.

1) Scientific workflows and data jobs: In the context of

scientific workflows, the control loop accepts multiple data

jobs that describe the state of datasets required by each

compute job or workflow stage as the workflow progresses

(Figure 3-(b)). While data jobs only describe the desired state

of datasets required during the execution of a compute job,

the intermediate states are actively tracked by Data Jockey.

For Data Jockey, the sequence of data jobs is a constantly

shifting system goal that the control loop has to reconcile. For

this sequence of data jobs, Data Jockey provides the necessary

synchronization with the associated compute jobs.

2) Dataset state interpolation: To support such dynamic

control on user datasets, Data Jockey maintains a catalog

of the required data management resources in the form of

a graph (Figure 3-(c)). In particular, Data Jockey maintains

information about the topology of data management resources

such as data stores and data movers, each translated into a

vertex (data store) and an edge (data movers). Data stores

represent individual storage tiers (i.e., file systems, archival

storage) while data movers represent the data paths in between

(i.e., POSIX cp tool, parallel copy, archival storage backup

tool). Here, Data Jockey considers ‘location’ as a primary

attribute for a dataset and uses the graph representation to

compute the necessary steps (multiple source-to-destination

copies) to reconcile the state of a dataset. Also, Data Jockey

dynamically extracts the storage hierarchy from the graph and

applies it to data movement.

3) Dynamic storage hierarchy: Data Jockey dynamically

extracts the storage hierarchies based on a coarsely grained

‘tier number’ given by the users that hint the orientation

of the data stores, influencing data movement within the

resource graph (Figure 3-(c)). In the resource graph, storage

tiers with higher tier numbers are peaks of a landscape where

user datasets either climb towards a higher tier (promote) or

descend to a lower tier (demote), all using the data pathways

(edges) between the data stores (vertices). This design is to

support multiple compute clusters in an HPC center (multiple

peaks) that are designed for specific tasks (e.g., compute, sim-

ulation, analytics) since storage hierarchies can vary from the

perspective of two different clusters due to the diversification

of storage tiers (i.e., SSD based performance tier dedicated to

a certain cluster).

4) Shaping datasets from state to state: When enforcing

state transformation of each dataset, Data Jockey uses a

sequence of read-modify-write of a replica (Figure 3-(d)).

If a replica of a desired set of properties does not exist,

Data Jockey reads a replica (read from a storage tier or

a compute job) and creates (write) a new replica with the

desired set of properties (modify). During these replica level

read-modify-write operations, Data Jockey guarantees that no

other I/O accesses are performed on the replicas involved to

maintain data integrity. Data Jockey achieves this by owning
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the replicas in a managed space where no third-party I/O

is allowed except for the ones that are explicitly allowed.

Since such a read-modify-write cycle always introduces a new

replica, Data Jockey implements several methods that control

the number of replicas in the system (Figure 4). Stale or

excessive replicas produced during the process are invalidated

and garbage collected (i.e., a new allocate invalidates all

existing replicas).

5) Impact on programming: Goal driven data management

significantly reduces the amount of information required from

the users in order to automate data orchestration. Figure 3-(e)

depicts a simple model that quantifies this impact. With Data

Jockey, it is sufficient for users to specify the destination state

since the transitions between the current state is automatically

inferred. Without Data Jockey, assuming the primary attribute

of a state is a location, a user might have to prepare multiple

source (source state) to destination (destination state) copy

statements (state transitions) for all known data paths and

implement a mechanism that is capable of selecting proper

data paths based on the current location of a particular dataset.

V. IMPLEMENTATION DETAILS

A. Data job specification

1) Multi-level abstraction: Data job specifications are

structured to have multiple levels of abstractions. This struc-

ture is to limit the complexities being exposed to the end-

users but also to be powerful enough for power users. Data

job specifications are composed using two key components.

One is the “library” and the other is the “directives” used in

job submission scripts. Libraries define the vocabulary of data

jobs, and directives use the vocabulary to compose and submit

a data job.

2) System administrators, users and power users: At

system design time, system administrators are expected to

define the library of possible dataset goal states and policies

when they setup available data stores and data movers. Later in

normal operations, users interact with Data Jockey by referring

to this pre-defined library of goal states and policies by their

name. In doing so, the pre-defined library serves as the system

default. Power users may choose to override or customize

existing elements in the library. In general, average users may

end up writing one-line directives that refer to entities in the

library. Advanced users would customize the library.

3) Library: Libraries provide the vocabulary of data man-

agement operations, defining the goal states and the dataset

policies. Data Jockey uses YAML [16] to define a library,

exploiting the hierarchical structure of YAML that scopes key-

value pairs (Figure 5-upper). Under the block “policy”, a “de-

fault” dataset policy is defined that handles three exceptions.

Also, under the block “placement”, four possible goal states

are defined. Each of these policies or goal states (placements),

are then defined with a set of key-value pairs accepted by the

orchestration engine. Libraries have a hierarchical structure

where higher level entities are built by composing multiple

low-level constructs. A “policy” is built on top of multiple

relevant “placements” (goal states) referred within the catch

# library.yml
policy:
default:
main: { default: ’ready’, timeout: 13d, max_replica: 3 }
on_evict: { apply: ’safe’ }
on_timeout: { apply: ’safe’ }
on_error: { apply: ’persist’ }

placement:
burst_sink: { storage: [’bb’], method: ’allocate’ }
ready: { storage: [’bb’, ’pfs_scratch’], method: ’clone’ }
persist: { storage: [’pfs_project’], method: ’migrate’ }
safe: { storage: [’hpss’], method: ’migrate’ }

#!/bin/bash
# simulation.pbs
#PBS -A pjt000 -N test -lwalltime:1:00:00,nodes=1500

#DJ "ds://pjt000/dataset0,./analysis/input,analysis"
#DJ "ds://pjt000/burst0,./output,dump"

mpirun -n 1500 ./a.out # Executing the main application

Fig. 5: Data job specification

blocks. Also, entities in the libraries have a layered structure

where each key-value pair is an override of the defaults.

4) Job script in-line directives: With the vocabulary de-

fined in the library, users submit data jobs with a set of

directives embedded in a job script. Data Jockey provides a job

submission wrapper that submits a data job from the directives

while submitting the main compute job to the job scheduler

(detailed in Section V-B). These directives are used to produce

an array of tuples, consisting of 1) a reference to a dataset, 2)

desired namespace mount location, 3) a reference to the goal

placement (goal state), 4) a reference to a placement policy,

and 5) a list of optional constraints such as the deadline for the

data job to reach the “goal state”, making datasets available

to the compute job.

The lower part of Figure 5 is an example of such di-

rectives used in a job script formatted in PBS (Portable

Batch System)1. The directives are embedded with the # DJ
prefix while other implicit settings are imported from the

environment. In the example, Data Jockey prepares an input

dataset at path ./input using the ‘analysis’ goal state in the

current work directory. Also, an empty dataset is created to

dump output at a path ./output using the ‘dump’ goal state.

Preparation of two such datasets, one existing and one to be

created is achieved with two lines of such directives.

B. Scheduler Integration

Data Jockey loosely integrates with job schedulers in order

to coordinate the execution of data jobs and their associated

compute jobs. When integrated with Data Jockey, job sched-

ulers are not aware of data jobs. Data Jockey behaves as if a

user submits a job and monitors the queue for further control.

To achieve this, Data Jockey provides a job submit wrapper

tool and a job queue control service. We chose such loose

1In-line embedding of directives is not limited to one job script format.
Support for other types of job scripts is a matter of having another job submit
wrapper tool for another scheduler.
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integration as a default to enable Data Jockey to be integrated

with broad types of job schedulers.2

1) Job submit wrapper tool: Job submit wrapper tools

are provided to perform parallel submission of compute jobs

and the embedded data jobs. Such tools are provided as a

wrapper CLI tool that accepts stdin or filenames of job

scripts (Figure 5). Data jobs are extracted and submitted from

in-line Data Jockey directives (Section V-A4) and the compute

job is submitted to the job queue control service.
2) Job queue control service: When data jobs and compute

jobs are submitted, the job queue control service ensures that

the execution of data jobs do not overlap with the execution

of compute jobs. This service ensures compute jobs are not

executed until the data jobs finish preparing the requested

datasets. Such control is achieved by monitoring the progress

of data jobs and also monitoring and controlling the status of

the compute job using integration methods (i.e., wrapping job

scheduler CLI tools).

C. Data Orchestration

The data orchestration pipeline implements the proposed

“goal driven data management” scheme. This pipeline imple-

ments the core part of the control loop.
1) Data placement resolution: Goal state of a dataset for

dataset requests are represented as “placement” components

implemented as a set of attributes that describe the goal state

of a particular dataset. Such attributes include destination

storage (i.e., burst buffer, parallel file system, archival) and

methods (Figure 4). “Goal states” placements are canonically

named by users or administrators to represent the desired state

of datasets (i.e., ready, persist, safe). These canonical names

form a user-friendly vocabulary when defining a higher order

“policy” component that enables users to define a goal for the

system to pursue. With such policies, users state a primary

goal placement where there are optional goals that should be

pursued upon system exceptions such as job failures, evictions,

timeouts, and errors.
2) Data movement planning: After the placement for a

dataset is resolved, a data placement request is issued to a data

movement planning stage. The target of the data movement

planner is to place the replica to the designated storage tier

even if it requires evicting existing replicas. To facilitate the

decision of what stays and what leaves, Data Jockey uses the

priority property which was given to the data jobs. With the

current implementation, the submission wall clock time is used

as the priority.

Phase1 - Nearest replica and promote location: For each

dataset request, the planner asks the resource manager for the

nearest replica (in the resource graph) in the dataset that can

reach the goal. Next, the tier to get closer to the goal tier is

inferred by the resource manager and the request is placed in

a waiting queue on the tier.

Phase2-A - Placement requests: Then, the storage planner

iterates through the storage tiers from top to bottom to process

2Tight integration with job schedulers (dataset and data job aware schedul-
ing) are left for our future work.

the placement request assigned to each tier. In this process, the

planner attempts to place the replicas in the tier but also tries

to find victim replicas it can ‘demote’. Here, requests that can

fit without evictions are marked actionable.

Phase2-B - Handling evictions: The requests that require

demotions are temporarily marked dependent on the victims.

For these victims, the planner gets a demotion location from

the resource manager. When victims are placed to a demotion

storage tier, the request inherits the priority of the root

placement request that caused the eviction. This action can

be chained throughout multiple storage tiers and are triggered

to be ‘actionable’ when the demotion of the furthest victim

can be fulfilled (enough quota), otherwise canceled.

Phase3 - Reap actionable: After the planner determines the

fate (actionable, non-actionable) of each placement request,

the planner reaps the chain of actionable requests starting

from the bottom tier to up. Here, a convoy of data movements

is issued starting when an evicted victim is finally marked

actionable. For example, simple space allocation for a replica

on the top tier that required a cascade eviction down two

tiers would result in three actions where the bottom tier data

movements are fulfilled first, followed by the upper tier data

movement and finally the actual allocation operation the user

wanted. In the sequence of actions, the planner guarantees

that the storage quota consumed by the convoy is locked from

subsequent planner iterations.

3) Resource manager support: To support the planner, the

resource manager maintains the graph-based dynamic storage

hierarchy mentioned in Section IV-B3. Queries such as finding

the nearest replica towards a goal storage tier is a matter of

evaluating the cost (e.g., bandwidth of edges) of shortest paths,

and finding a data movement plan towards a goal location (i.e.,

promotion) is a matter of translating the paths to a series of

source-to-destination data movement steps.

In this graph, data stores are labeled with tier numbers that

define the altitude of their position in the storage hierarchy,

influencing replica demotion. For demotion, a lower altitude

neighbor that has the shortest path towards the goal location

is selected. Since the planner performs the scan starting from

above (higher tiers), the demoted replicas generally flow

towards lower altitude storage (valleys in the graph) when

evicted by higher priority replicas.

4) Data movement scheduling execution: After the plan-

ning stage, the data movement execution stage dispatches the

queued actionable data movements. Data Jockey implements

a low-level scheduler that selects eligible data movements

and assigns them to the resource agents that are available.

The progress of these data movements are then tracked and

managed. It is guaranteed that the progress falls into discrete

atomic states such as ‘queued,’ ‘pending,’ ‘error’ and ‘done’.

Underneath, resource agents encapsulate the invalid states by

performing automatic cleanup. This stage ensures that low-

level data movements that have dependencies adhere to the

correct sequence by honoring the dependency chain (convoy)

assigned by the planner.
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Fig. 6: Data Jockey implementation

5) I/O session: After the data preparation stage is finished,

the replica is pinned and an I/O session is opened to give

access to the application. Within the I/O session window, a

special resource agent instance that is run in-situ of the context

of a compute job configures the I/O interface layer to provide

access to the application. Currently, Data Jockey uses symbolic

links to set up an I/O path towards a managed replica but can

be extended with sophisticated I/O interposing mechanisms.

D. Data Jockey Implementation

Data Jockey was implemented to have a control plane, a data

plane and a set of tools to provide a user interface (Figure 6).

Data Jockey was implemented with approximately 15K lines

of Python 3.6 [17] code that leverage a message broker

(RabbitMQ 3.6 [18]) for internal communications and an

RDBMS for metadata persistence (MariaDB 5.5.56 [19]). For

the control plane’s external communication with the resource

agents and CLI tools, Data Jockey uses HTTP based REST

APIs and WebSockets. Job scheduler integration was done

with Torque 6.0.2 / Moab 9.1.1.

1) Control plane - Web application: The control plane

implements data job processing, automatic replica placement,

and orchestration. To interact with the users, the control plane

exposes multiple REST API [20] endpoints that enable users

to manipulate the state of data jobs, datasets, and resource

agents. Manipulation of certain resources via the API (i.e., data

job submission) triggers a cascade of operations backed by

multiple stages of worker processes that pick up the necessary

state to handle a certain stage, eventually leading to the issuing

of low-level operations towards the data plane.

2) Data plane - Resource agents: Resource agents are

agent daemon processes that form the communication back-

bone of the data plane. When deployed on a node, agents

announce the capability of a particular node (i.e., mountpoints,

data movement tools) to the control plane via a WebSocket

connection and subscribe for low-level data management tasks.

Within the control plane, such announced capabilities are used

to construct a resource graph by connecting data stores and

data movers based on available interfaces (POSIX, object store

or other) and reachability domains (network).

3) Concurrency model and coordination: Data Jockey has

been implemented in an asynchronous event-driven architec-

ture backed by a shared pool of stateless worker processes and

a common persistent layer. In Data Jockey, each data object

related to a data job is implemented as a state machine where

the states are persisted as database records. State manipulations

are handled by any process available in the pool when an event

occurs. This architecture was implemented using the RDBMS

to persist state manipulations while using the message broker

to maintain and coordinate the worker pool. Data Jockey

heavily relies on the transactional guarantees of the RDBMS

to make consistent updates of flags and state fields of multiple

objects.

4) Fault tolerance and scalability: The architecture de-

scribed in Section V-D3 makes Data Jockey relatively easy

to scale and be tolerant to failures. When worker processes

fail to handle an event, the message broker guarantees a retry

while the atomicity of a state manipulation is guaranteed by

the RDBMS backend. Also, scaling the control plane is a

matter of increasing the number of workers in the pool. In

this design, the backend RDBMS is the bottleneck, but this

issue can be addressed with database sharding techniques. Data

Jockey relies on a project-oriented resource model that can

better support such partitioning techniques.

VI. EVALUATION

In this section, we present the evaluation results for the Data

Jockey, seeking to answer the following questions.

• What is the impact of Data Jockey in terms of user

experience?

• Can Data Jockey be deployed as a center-wide data

management service for HPC facilities?

• How well does Data Jockey integrate into HPC environ-

ments?

To answer these questions, we evaluated a prototype of

Data Jockey that implements the key features described in

Section V. Our prototype has been deployed and evaluated

in two separate environments, a small-scale testbed, and a

mid-scale HPC production environment. We have obtained 18

months worth of operational scheduler logs from OLCF and

used the analysis of these logs to guide our evaluations.

A. Quantifying the Impact of Data Jockey on User Experience

We measured Data Jockey’s usability on how much it

reduces the complexity of data movements from a user per-

spective. Considering system states and transition paths as

vertices and edges in a state diagram (Figure 3-(e)), we

measured the complexity of a workflow as the total number

of vertices/edges that users need to account. In a conventional

script, such elements translate into branches of if-else control-

statements. For Data Jockey, these elements translate into

object definitions within the data job specification.

For a workflow on a multi-tiered storage system with T
storage tiers, assume the workflow produces datasets with the

same write pattern D times, each time generating a single

aggregate dataset. In the system, T storage tiers are connected

by V paths; datasets can be transferred from one tier to another

by the data movers in between; in the data-movement process,

E failures may occur on storage tiers or data movers before

a data transfer succeeds.
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Fig. 7: Complexity reduction of Data Jockey on workflows in

the OLCF operational log

Fig. 8: Complexity reduction of Data Jockey on workflows by

varying parameters

Thus, when a workflow owner designs data movements on a

multi-tiered storage system, in the worst case, D×T ×V ×E
if-else design cases should be considered. In the best case,

the user can specify tiers and paths and we can consider a

smaller set of design cases: D × E′, where E′ is the error

on the specified tiers and data movers. Thus, with the use of

Data Jockey, the system-side complexity is reduced (V × T ).

To measure the efficiency of Data Jockey, we estimated the

complexity reduction by: 1 − D×E
D×T×V×E for the worst case

and 1− D×E′
D×E′×V×T for the best case.

We analyzed the complexity reduction due to Data Jockey

based on OLCF operational logs collected from January 2017

to August 2018. In this study, we considered the jobs under

the same project ID as a workflow. The OLCF data includes

243,265 workflows, each workflow having 1—158,582 com-

putational jobs and one analytic job; each computational/ana-

lytic job produced a single dataset. Figure 7 reports the results.

It suggests that for workflows in the OLCF storage systems,

Data Jockey attained 85.7%—99.9% complexity reduction,

with 216,151 workflows (88.85%) having a single compu-

tational job and a single analytic job. Specifically, for these

simple workflows, Data Jockey achieved the lowest complexity

reduction with 85.7% for the best case and 95.1% for the worst

case, respectively; with the increase in numbers of jobs, the

complexity reduction increased.

TABLE II: Performance goals

1) Job processing performance (unit: jobs/min)

Mean Max Goal

Arrival rate 2.29 423 -

Start rate 2.1 36 >36

Completion rate 1.97 290 -

2) In-flight jobs (unit: jobs)

Mean Max Goal

Waiting 1.15 300 >300

Running 1.03 29 >29

(b) Workflow setup per client

1. Allocate replica on Storage1

S W I/O F

2. Summon the replica on Storage2

S W I/O F

3. Archive a replica for safety

S W F

(c) Resource cfg.

S W I/O F

Storage 1 Storage 2

Archival

Movers

Datajob
Submission

Wait for
pending
Datajob

Perform
I/O on 
replica

Datajob finished
(replica released)

Node 0 Node 1

RDBMS
Buffer pool: 100GB
Storage: 256GB SSD

Control Plane
REST API workers: 64
Scheduler workers: 1
Message broker: 1

(a) Testbed setup Node 2 ~ 4 Node 5 ~ 7

Data Plane 0 ~2
Resource Agent
Workers: 1 ~ X
User Clients: 1 ~ Y

Data Plane 3 ~ 5
Resource Agent
Workers: 1 ~ X
User Clients: 1 ~ Y

Fig. 9: Testbed setup

Moreover, to understand the complexity reduction due to

Data Jockey in different settings, we studied the performance

by varying the number of repeated writes (D) and the number

of storage tiers (T ). Specifically, we simulated the behaviors

of users and Data Jockey based on these varying parameters.

At the start point, we assumed that the workflow produces a

single dataset running on a single-tier system 3.

Figure 8 reports the results. By varying D, Data Jockey

attained the same complexity reduction ranging from 35.45%

to 72.54%; by varying T , Data Jockey attained a reduction

ranging from 35.45% to 99.21%. It suggests that when the

system-side complexity grows (D, T ), Data Jockey reduced

more complexity from users. In the extreme cases (e.g., T =10

in Figure 8), Data Jockey can achieve > 99% complexity

reduction.

B. Feasibility as a Center-wide Data Management Service

Since data jobs are issued to prepare data for compute jobs

and are executed in parallel, data job processing rate of Data

Jockey should keep up with the compute job scheduler when

deployed. For this reason, the performance goal for processing

data jobs were set to exceed the maximum job start rate and

the maximum number of in-flight jobs observed waiting or

running (Table II).

For this evaluation, we set up a controlled testbed (Figure 9-

(a)). In this testbed, we employed eight x86 nodes each

equipped with one AMD EPYC 7351 16-core processor that

3In the simulations, we assumed that relative paths (V ) and data movement
errors (E) are dependent parameters and vary according to D and T on
Weibull distributions [21].
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Fig. 10: Impact of concurrent users and resource agents: 16

to 128 RAs (resource agents)

(a) Latency (b) Throughput

Fig. 11: Impact of the number of storage tiers and user datasets

(256 concurrent users, 128 resource agents)

is capable of 32 H/W threads (2.40Ghz 6MB Cache) and 128

GB of main memory. Compared to a real HPC environment,

this environment lacks access to real storage tiers and bulk

data movement used in production.

To load the control plane, we implemented a workload

driver that can mimic the data job submission behavior under

a fixed workflow depicted in Figure 9, (b) and (c). Under

this workflow, the dataset placement planner acknowledges

the size of each replica but the resource agents were set up to

move zero bytes of data even though they receive commands

to allocate, move and delete entries. Also, we fixed the size

of the replicas being allocated to have a constant flow of data

jobs being processed.

Figure 9-(a) shows data job processing throughput of a

single-node control plane under a varied number of users and

resource agents (Figure 10). The control plane was able to

scale up to approx 70 data jobs per minute but required more

resource agents to achieve more. With enough resource agents

(128 RA), the control plane was able to process more than

600 data jobs per minute. This data job processing rate was

enough to accommodate the job burst (36 jobs per minute -

Table II) of our load. The control plane was able to sustain

such performance over 512 concurrent jobs which was also

enough to accommodate a maximum burst of 300 pending

computational jobs submitted to our clusters.

We also evaluated the performance of a single data move-

ment planner instance mapped for a single project under a

varied number of storage tiers and datasets per workflow iter-

ation (Figure 11). The performance of a single data movement

planner was mainly impacted by the total number of datasets

with performance degradation down to 18 data jobs per minute

with 2,048 datasets. We assumed 1,024 – 2,048 active datasets

(collection of files) were enough for a group of users in a single

project.

InterimCompute

Compute 
Partition

Compute 
PartitionHPSS

Analysis

Analysis 
Partition

Compute 
Partition

Analysis 
Partition

HPSS

Interim

Analysis 
Partition

Compute 
Partition

HPSS

Fig. 12: Possible data paths that a dataset will follow during

the course of the evaluation campaign.

With the results, we conclude it is possible to deploy

Data Jockey serving large HPC clusters like Titan [22] or

Summit [2]. A single node deployment with a single database

instance was enough to accommodate the peak load.

C. Feasibility of Integration with HPC environments

In order to gauge the feasibility of integrating Data Jockey

into HPC environments, we conducted experiments utilizing

synthetically generated workflows with Data Jockey and com-

pared the results against the same workflows managed by a

user-like entity. These workflows are based on the analysis

of production scale jobs of two distinct supercomputers. A

workflow consists of multiple phases where each phase con-

sists of a set of computational jobs and a single analysis

job. Every computational job requires an independent input

dataset and produces an output dataset. These output datasets

are utilized as the input datasets for the analysis job that in

turn generates a finalized, resultant dataset. The next phase

cannot commence until the analysis job of the current phase

has completed. Therefore, there is an explicit job and data

dependency among not just the set of jobs within each phase

but between the phases as well. This dependency chain closely

resembles observed data patterns at OLCF.

For the HPC environment, we used 16 nodes from the

Rhea cluster at OLCF with 14 of the nodes serving as virtual

computational nodes and 2 as analysis nodes. Each physical

node operated as a set of virtual nodes with each node scaling

to 1,334 and 256 virtual computational and analysis nodes,

respectively. By utilizing job packing, we were capable of

handling a large number of jobs allowing us to integrate

Data Jockey with the PBS scheduler on Rhea. Since each job

performed no actual computation and very little I/O, utilizing

ftruncate to create the dataset, we do not believe that the virtual

scaling introduced an issue. These nodes also functioned as

resource agents to manage the movement of the datasets.

We utilized three storage tiers for this evaluation, an archival

HPSS tier and two Lustre PFS tiers provided by Spider II.

The compute and analysis elements do not possess a shared

PFS backplane, therefore, requiring that data be moved across

to be accessible. Figure 12 illustrates the potential paths that

a dataset may traverse during a workflow. Depending upon

the size of the initial input dataset for a job, it may reside

on either HPSS or the two PFSs with more massive datasets

being initially located on HPSS. By the time of execution, Data

Jockey has to relocate the dataset onto a PFS that the compute
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Fig. 13: Job wait time grouped by data transfer requirements.

nodes can access. In the interim, between computation and

analysis work, Data Jockey may migrate the input and output

datasets among the three tiers as needed. However, Data

Jockey must ensure that before the analysis job was released

from the scheduler, it delivered the corresponding datasets onto

the analysis PFS partition. After a workflow phase, the datasets

were released and could be migrated back to the HPSS tier

as Data Jockey deemed necessary for capacity reasons. Much

of the data shuffling between the filesystems and HPSS is

mandated by filesystem quota limits and purge policies. Work

areas on Lustre are 10 to 100 TB and can be purged within 14

to 90 days. Without Data Jockey, users have to be cognizant

about these policies or risk job stalls and even data loss.

Based on an analysis of the OLCF scheduler logs and per

job I/O data from Lustre for three months, a driver script

stochastically generated the workflows from two multivariate

empirical CDFs, one for the computational stage and the other

for the analysis stage. For the computational stages (first CDF),

the number of concurrent jobs and per job node size, runtime,

input dataset size, and output dataset size are randomly chosen.

For the analysis stages (second CDF), only the node size,

runtime, and output dataset size are generated. Further, for

the analysis stages, the number of jobs is fixed at 1, and the

computational stage’s output determined the input datasets.

Collectively, we have set the number of concurrent workflows

to 4, twice the number typically witnessed in practice.

Beyond just demonstrating the feasibility and benefits of

Data Jockey, the crux of the evaluation is proving that Data

Jockey does not negatively impact the execution of the work-

flows. We executed several runs over multiple days resulting

in over a hundred job runs and over twice that number of data

jobs transferring data for the jobs. There were also several

involuntary evictions as completed datasets were migrated

from working to permanent storage on HPSS.

Figure 13 provides a breakdown of the latency introduced

by Data Jockey. The results are grouped into three distinct

boxplot graphs by the type of job and data transfer required

for execution. The queued column provides the total time

jobs spent waiting in the scheduler queue (excluding job

dependency time), and the DJ column has the fraction of that

queue time spent waiting on DJ decision-making and data

transfer.

For datasets already existing on the proper tier where no

data movement is required, Data Jockey adds no more than

a mean of 7.9 seconds as shown in the leftmost graph. The

time spent should provide the expected overhead of setup,

tear-down, and decision-making for all Data Jockey jobs.

Additionally, as those jobs are already queued, that latency

may be entirely masked by the work of the scheduler.

The second and third graphs in Figure 13 illustrate the

effects when data movement is required. Most of the time

spent by Data Jockey is triggered by moving the datasets, and

in the case where there are ample compute resources, as in

the middle graph, the scheduler can release the job almost

immediately. Where resources are constrained due to lack of

nodes for analysis, as in the rightmost graph, we can see

the entirety of Data Jockey masked by resource contention.

Although Data Jockey extended the queue time for the middle

graph, without Data Jockey the user would have had to execute

the transfer before scheduling the job. The combined time of

manually transferring the data and then submitting the job

should be equal to or greater than with Data Jockey.

We implemented a user emulation script that simulates un-

coordinated, multiple users executing their workflows. These

users are ideal in that they perform constant monitoring of their

jobs and data movements. The script is similar to the Data

Jockey driver script; however, each workflow must manage

their datasets as well as scheduling jobs. Lacking information

about when their datasets will arrive, jobs cannot be submitted

until after the datasets have been placed. Furthermore, work-

flows only transfer data to HPSS when there is an explicit need

and not opportunistically, potentially introducing workflow

stalls.

While conducting this evaluation, we experienced scheduler

reservation issues that adversely affected the queue time of

jobs emanating from Data Jockey. The mean job throughput

was 3.7 jobs per hour for the user script and 2.9 jobs for

Data Jockey. Closer examination revealed that this was due to

the prolonged time that jobs were blocked by the scheduler.

The mean times for dataset movement were essentially the

same, but the queue time was 1,441 versus 468 seconds for

the Data Jockey and the user scripts, respectively. Even though

the overall result is subpar, an important caveat is that the user

script is constantly monitoring and updating their jobs. Adding

less than 5 minutes of user "think" time per job causes Data

Jockey to be more performant. This result leads us to expect

that Data Jockey would improve system utilization despite

these initial results.

VII. RELATED WORK

Managing data on HPC systems in the context of scien-

tific workflows gives rise to several data management chal-

lenges [23]. Current workflow management systems provide

different solutions for managing workflow data. Pegasus [5]

uses replica catalogs that map logical file identifiers to their

physical locations. However, these catalogs do not support any

policy-based data placement and access capabilities as pro-

vided by the Data Jockey. Swift [6] is a workflow language that

implicitly manages data across multiple tasks and nodes. Swift

is capable of utilizing the underlying data transfer protocols
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for efficient data distribution, but it does not allow users to

manage workflow data based on the storage properties of a

hierarchical storage system. An alternative way is to use in-situ

workflows that minimize the cost of data transfers [24], [25].

But with complex workflows that need to manage data across

multiple storage layers, a workflow-aware data management

service is required. Different data management strategies are

proposed based on the network and storage properties for

efficiently transferring data over wide-area networks [26], [27].

Data Jockey is capable of integrating such data management

strategies to define policies for efficient data migration across

a hierarchical storage system.

VIII. CONCLUSIONS

In this work, we have presented Data Jockey to offload the

burden of data management from users in HPC environments

with a multi-tiered storage architecture. With Data Jockey, we

have proposed a new data management scheme called “goal

driven data management.” By maintaining a view of the current

system state and automatically inferring source to destination

data movements, Data Jockey allows users to provide only the

goal destination of datasets. This scheme eases the complex-

ity of orchestrating data across complex storage hierarchies

compared to prior methods where users have to explicitly

reason and control the source and destination of datasets.

By relieving the user from the programming complexity of

tiers, data paths and error handling, our projections show a

complexity reduction of 85.7 to 99.9%.

To ascertain whether Data Jockey can be integrated into

HPC facilities, we evaluated a prototype implementation in a

real HPC environment. Using job and I/O logs from the OLCF,

we conducted realistic, synthetic workflows over the course

of several days. Aside from mandatory data movements,

negligible impact and overhead were observed while Data

Jockey was running at scale. Furthermore, by co-scheduling

dataset movement and jobs, the combined latency is reduced

than when managed independently. Our initial results suggest

that Data Jockey would be capable of serving as a center-wide

data orchestration service.

As storage tiers continue to deepen and diversify, we believe

that systems like Data Jockey will be required to enable

scientific progress while not inhibiting system designers from

utilizing sophisticated storage architectures.
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